Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e26320, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623246

RESUMO

Agglomeration of wet particles, i.e., particles coated with a thin liquid layer, is a common phenomenon in many processes like fluidized bed combustion of low rank fuels. The availability of an agglomeration model that can evaluate the outcome of a binary collision between wet particles differing in solid particle properties, liquid layer thicknesses, and initial collision (impact) speeds is essential for obtaining a comprehensive understanding on the existing processes experiencing wet particle agglomeration or for a successful development of new processes with high chances of wet particle agglomeration. This study presents a generalized agglomeration model on the basis of energy conservation before and after collision when colliding wet particles may differ in solid particle properties, liquid layer thicknesses, and impact speeds. The model was established based on the approximate values of energy losses that may happen during the collision. It incorporates body forces, solid-solid contacting, liquid capillary, and viscous contributions, as well as the liquid bridge volume effect. Predictions of the new model for collision outcomes of identical wet particles were like those from an analytical energy balance model developed recently by the group for identical wet particles. We also validated the new model by experimental data from literature. The results of a collision direction analysis indicated that the direction often has a minimal effect on the collision outcome in many practical scenarios. The results of Monte Carlo uncertainty analyses with the new model revealed that proper estimations of impact speed, under capillary limiting conditions, and thickness of coating layers and asperity heights, under viscous limiting conditions, are critical for the realistic prediction of collision outcomes at impact speeds close to critical impact speed, i.e., the minimum particle speed required for the particles to rebound.

2.
Water Res ; 154: 125-135, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782554

RESUMO

A novel pyrolusite fluidized bed (PFB) contactor, which we recently developed for dissolved manganese (Mn(II)) removal through surface adsorption and subsequent oxidation by free chlorine, was modeled in this study. The hydrodynamic behavior of the filter media and water in the fluidized bed was described by the axial dispersion model. The model incorporated the effects of axial mixing in the liquid and solid phases, mass transfer resistance in a laminar fluid boundary layer surrounding a media grain, and a second order oxidation rate expression. The experimental data from lab-scale and field pilot-scale contactors was adopted for the model development and its validation. For the former, the data was employed to estimate the oxidation rate constant, the mass transfer coefficient, and the axial solid phase dispersion coefficient for the model. The model simulations matched the experimental data with less than 20% error across a wide range of Mn(II) and free chlorine concentrations and hydraulic loading rates that might be encountered in a drinking water treatment plant. The sensitivity analysis showed that the time to breakthrough is most sensitive to the adsorption isotherm constants and the oxidation rate constant. These observations indicate that the alluded parameters mainly control the performance of the PFB contactor as well as the process stability. Finally, a sample application of the model to acquire operational inputs was illustrated by analyzing the effect of free chlorine concentration on Mn(II) removal performance and breakthrough time within a PFB contactor.


Assuntos
Manganês , Purificação da Água , Adsorção , Compostos de Manganês , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...